banner

Blog

May 26, 2023

Designing air

Nature Materials (2023)Cite this article

414 Accesses

1 Altmetric

Metrics details

Pressure sensing is challenging in liquid environments, where typical solid-state sensors do not perform well. A sensor with solid–liquid–liquid–gas multiphasic interfaces — its design inspired by the lotus leaf, and in which a trapped air layer modulates capacitance changes with pressure — is shown to achieve near-ideal pressure sensing and is well suited to liquid environments.

This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

$259.00 per year

only $21.58 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Bourdon, M. E. A description of a new metallic manometer, and other instruments for measuring pressures and temperatures. J. Frankl. Inst. 53, 102–104 (1852). This paper reports the first documented solid-state pressure sensor.

Article Google Scholar

Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013). A review article on the development of skin-like pressure sensors.

Article CAS Google Scholar

Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). This paper reports a super slippery surface.

Article CAS Google Scholar

Download references

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a summary of: Cheng, W. et al. Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing. Nat. Mater. https://doi.org/10.1038/s41563-023-01628-8 (2023).

Reprints and Permissions

Designing air-entrapment interfaces for near-ideal pressure sensors. Nat. Mater. (2023). https://doi.org/10.1038/s41563-023-01640-y

Download citation

Published: 23 August 2023

DOI: https://doi.org/10.1038/s41563-023-01640-y

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

SHARE